Artificial intelligence to predict university master's program recommendations

Authors

DOI:

https://doi.org/10.35564/jmbe.2024.0002

Keywords:

university master's program, student satisfaction, artificial intelligence, ai, machine learning, supervised learning, recommendation

Abstract

The satisfaction of a student in a master's program can be influenced by factors such as program quality, learning opportunities, guidance and support received, infrastructure and resources available, outcomes, and employability. In this study, impressions of students from the Master's in Financial Counseling and Planning at Universidad Rey Juan Carlos were collected through a survey. These responses were used to train various artificial intelligence models with the aim of predicting whether the master's program would be recommended. The result of retrospective validation shows an accuracy of over 80% in all cases, leading us to conclude that artificial intelligence is a valid tool for this objective. This investigation contributes to understanding the efficacy of AI in predicting student recommendations for master's programs. It highlights the potential of AI models to inform program enhancements and optimize student experiences, while also emphasizing the need for robust research methodologies and considerations of student satisfaction factors

Downloads

Download data is not yet available.

References

Barba Rey, M., Blanco - González, A. y Miotto, G. 2023. Percepción ética de la marca y valor de marca: Análisis comparativo del Global 100 Ranking y del Best Global Brand Ranking. aDResearch ESIC International Journal of Communication Research. 30, (dic. 2023), e264. DOI:https://doi.org/10.7263/adresic-30-264.

https://doi.org/10.7263/adresic-30-264 DOI: https://doi.org/10.7263/adresic-30-264

CNMV (2020) Guía técnica 4/2017 para la evaluación de los conocimientos y competencia del personal que informa y asesora. Retreived from: https://www.cnmv.es/DocPortal/Legislacion/Guias-Tecnicas/GuiaTecnica_2017_4.pdf

Cruz-Suárez, A., Martínez-Navalón, J.-G., Gelashvili , V. ., & Herrera-Enríquez, G. (2022). Creativity and innovation in technology and operations management through brainstorming. Journal of Management and Business Education, 5(1), 63-75. https://doi.org/10.35564/jmbe.2022.0005

https://doi.org/10.35564/jmbe.2022.0005 DOI: https://doi.org/10.35564/jmbe.2022.0005

Delgado-Alemany, R., Revilla-Camacho, M. A., & Blanco-González, A. (2020). Is a university committed to ethics perceived as an honest, appropriate and properly managed organization?. Journal of Management and Business Education, 4(1), 12-32. https://doi.org/10.35564/jmbe.2021.0001

https://doi.org/10.35564/jmbe.2021.0001 DOI: https://doi.org/10.35564/jmbe.2021.0001

Díez de Castro, E. (2020). Higher education in management and its legitimacy. Journal of Management and Business Education, 3(3), 181-192. https://doi.org/10.35564/jmbe.2020.0019

https://doi.org/10.35564/jmbe.2020.0019 DOI: https://doi.org/10.35564/jmbe.2020.0019

Díez-Martín, F., Miotto, G. & Del-Castillo-Feito, C. (2023). The intellectual structure of gender equality research in the business economics literature. Review Managerial Science https://doi.org/10.1007/s11846-023-00671-8

https://doi.org/10.1007/s11846-023-00671-8 DOI: https://doi.org/10.1007/s11846-023-00671-8

El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing.

https://doi.org/10.1007/978-3-319-18305-3_1 DOI: https://doi.org/10.1007/978-3-319-18305-3_1

Cachón-Rodríguez, G.; & Prado-Román, C. (2020) The identification-loyalty relationship in a university context of crisis: the moderating role of students and graduates. Cuadernos de Gestión 20(3), 53-60.

https://doi.org/10.5295/cdg.191109gc DOI: https://doi.org/10.5295/cdg.191109gc

Gómez-Martínez, R., Medrano-García, M. L. y Aznar-Sánchez, T. (2023). Motivation and personalization of teaching with machine learning. Journal of Management and Business Education, 6(3), 330-342.

https://doi.org/10.35564/jmbe.2023.0017 DOI: https://doi.org/10.35564/jmbe.2023.0017

Gómez López, R., Odriozola, M. D., Llorente, I., & Baraibar-Diez, E. (2022). Teaching organizational structure through the case method. Journal of Management and Business Education, 5(3), 297-318. https://doi.org/10.35564/jmbe.2022.0018

https://doi.org/10.35564/jmbe.2022.0018 DOI: https://doi.org/10.35564/jmbe.2022.0018

González Zamora, M. D. M., & Sanchís Pedregosa, C. (2014). Satisfacción de los egresados con la formación recibida en el Máster de Estudios Avanzados en Dirección de Empresas. Educade: Revista de Educación en Contabilidad, Finanzas y Administración de Empresas, 5, 33-48.

https://doi.org/10.12795/EDUCADE.2014.i05.04 DOI: https://doi.org/10.12795/EDUCADE.2014.i05.04

Gordo-Molina, V., & Diez-Martin, F. (2021). Dimensiones de la legitimidad organizativa en función del género y el estatus de los consumidores. ESIC Market, 53(1), e13. https://doi.org/10.7200/esicm.53.013

https://doi.org/10.7200/esicm.53.013 DOI: https://doi.org/10.7200/esicm.53.013

Nápoles-Nápoles, L. Y., Tamayo-García, P., & Moreno-Pino, M. (2016). Medición y mejora de la satisfacción del cliente interno en instituciones universitarias. Ciencias Holguín, 22(2), 1-16.

Miotto, G., Blanco-González, A., Paule-Vianez, J., & Escamilla-Solano, S. (2023). Managing Perceived Legitimacy in Uncertain Times: The Effects of Long-Covid. Tripodos, (54). https://doi.org/10.51698/tripodos.2023.54.03

https://doi.org/10.51698/tripodos.2023.54.03 DOI: https://doi.org/10.51698/tripodos.2023.54.03

Olmedo-Cifuentes, I., & Martínez-León, I. M. (2022). University dropout intention: analysis during covid-19. Journal of Management and Business Education, 5(2), 97-117. https://doi.org/10.35564/jmbe.2022.0007

https://doi.org/10.35564/jmbe.2022.0007 DOI: https://doi.org/10.35564/jmbe.2022.0007

Pérez Padilla, J. (2015). Expectativas, satisfacción y rendimiento académico en alumnado universitario. Revista de Psicología y Educación.

Vila-Boix, L., Blanco-González, A., Miotto, G. et al. The impact of social media advertising on brand' legitimacy. Int Entrep Manag J (2023). https://doi.org/10.1007/s11365-023-00939-1

https://doi.org/10.1007/s11365-023-00939-1 DOI: https://doi.org/10.1007/s11365-023-00939-1

Villena Martínez, E. I., Rienda Gómez, J. J., Sutil Martín, D. L., & García Muiña, F. E. (2023). Serious board games for enhancing socioemotional skills and their impact on motivation in university students. Journal of Management and Business Education, 6(3), 488-508. https://doi.org/10.35564/jmbe.2023.0026

https://doi.org/10.35564/jmbe.2023.0026 DOI: https://doi.org/10.35564/jmbe.2023.0026

Zhou, Z. H. (2021). Machine learning. Springer Nature.

https://doi.org/10.1007/978-981-15-1967-3 DOI: https://doi.org/10.1007/978-981-15-1967-3

Downloads

Published

2024-02-07

How to Cite

Gómez Martínez, R., Medrano-García, M. L. ., & Aznar-Sánchez, T. (2024). Artificial intelligence to predict university master’s program recommendations. Journal of Management and Business Education, 7(1), 25–36. https://doi.org/10.35564/jmbe.2024.0002

Issue

Section

Articles