Motivation and personalization of teaching with machine learning

Authors

DOI:

https://doi.org/10.35564/jmbe.2023.0017

Keywords:

Teaching Innovation, machine learning, AI, Artificial Intelligence, Motivation, Decision Trees

Abstract

The motivation of the student causes the teaching experience to be more enjoyable for the student and results in better utilization of the teaching activity. The key is to identify where that motivation lies in order to adapt the content to the student's expectations. The objective of this work is to establish a method to identify the student's motivation regarding the training they are going to receive and be able to personalize the learning experience according to this motivation. To achieve this, we describe an experience in which a machine learning model of decision trees was trained using a voluntary survey generated through LinkedIn. By consulting the LinkedIn profiles of the respondents, a training dataset was created, which resulted in a model that achieved a 72% accuracy rate in a 10-fold stratified cross-validation. During the presentation of the students who enrolled in the activity, the necessary information was captured to generate a test dataset, which was used to validate the trained model. The accuracy rate of this validation was 100%. Although the sample size and predictors used are limited, we believe that this experience sufficiently illustrates the potential of artificial intelligence to identify student motivations and thus personalize the teaching experience, with the aim of increasing motivation and improving student performance.

Downloads

Download data is not yet available.

References

Alghamdi E. (2023). Digital games use in entrepreneurhip education at the undergraduate level: a systematic review. Journal of Management and Business Education, 6(2), 173-198. https://doi.org/10.35564/jmbe.2023.0009 DOI: https://doi.org/10.35564/jmbe.2023.0009

Anaya-Durand, A., & Anaya-Huertas, C. (2010). ¿Motivar para aprobar o para aprender? Estrategias de motivación del aprendizaje para los estudiantes. Tecnología, ciencia, educación, 25(1), 5-14. https://doi.org/10.21158/9789587560015 DOI: https://doi.org/10.21158/9789587560015

Aragonés-Jericó, C.; & Canales-Ronda, P. (2022). Aprendizaje ágil en marketing: Scrum en la educación superior. Journal of Management and Business Education, 5(4), 345-360. https://doi.org/10.35564/jmbe.2022.0020 DOI: https://doi.org/10.35564/jmbe.2022.0020

Ardisana, E. F. H., & Fidel, E. (2012). La motivación como sustento indispensable del aprendizaje en los estudiantes universitarios. Pedagogía Universitaria, 17(4), 13-27.

Campanario, J. (2002). ¿Cómo influye la motivación en el aprendizaje de las ciencias? [en línea]. http://www2.uah.es/imc/webens/127.html

Díez-Martín, F., Miotto, G. & Del-Castillo-Feito, C. (2023). La estructura intelectual de la investigación sobre igualdad de género en la literatura de economía de la empresa. Review Managerial Science https://doi.org/10.1007/s11846-023-00671-8 DOI: https://doi.org/10.1007/s11846-023-00671-8

Díez-Martín, F., Blanco-González, A, & Díez-de-Castro, E (2021) La medición de un concepto científicamente polifacético. La jungla de la legitimidad organizativa, European Research on Management and Business Economics, 27(1). https://doi.org/10.1016/j.iedeen.2020.10.001. DOI: https://doi.org/10.1016/j.iedeen.2020.10.001

Gómez-Martínez, R.; Medrano García, ML.; & Veiga Mateos, J. (2022). Caso de éxito en la adaptación de las enseñanzas de máster a covid-19. Journal of Management and Business Education, 5(2), 156-168. https://doi.org/10.35564/jmbe.2022.0010 DOI: https://doi.org/10.35564/jmbe.2022.0010

Olmedo-Cifuentes, I.; & Martínez-León, I. (2022). Intención de abandono universitario: análisis durante el covid-19. Journal of Management and Business Education, 5(2), 97-117. https://doi.org/10.35564/jmbe.2022.0007 DOI: https://doi.org/10.35564/jmbe.2022.0007

Pintrich, P., Smith, D., García, T., & W. McKeachie (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). National Center for Research to Improve Postsecondary Teaching and Learning. Universidad de Michigan. Resultado puntuación demasiado baja Pintrich, P. & García, T. (1993). Intraindividual diffrences in students' motivation and selfregulated learning. German Journal of Educational Psichology, 7 (3), 99-107 DOI: https://doi.org/10.1177/0013164493053003024

Plaza Casado, P.; Escamilla Solano, S.; Orden-Cruz, C. (2020). Motivación del alumnado en un caso práctico real de toma de decisiones de inversión. Journal of Management and Business Education, 3(3), 250-265. https://doi.org/10.35564/jmbe.2020.0016 DOI: https://doi.org/10.35564/jmbe.2020.0016

Polanco-Hernández, A. (2005). La motivación en los estudiantes universitarios. Revista Electrónica" Actualidades Investigativas en Educación", 5(2), 1-13. https://doi.org/10.15517/aie.v5i2.9157 DOI: https://doi.org/10.15517/aie.v5i2.9157

Rianudo, M. C., Chiecher, A., & Donolo, D. (2003). Motivación y uso de estrategias en estudiantes universitarios. Su evaluación a partir del Cuestionario de Aprendizaje de Estrategias Motivadas. Anales de Psicología/Annals of Psychology, 19(1), 107-119.

Santos-Rego, M.A., Priegue-Caamaño, D, & Lorenzo-Moledo, M. (2009). Aprendizaje cooperativo: práctica pedagógica para el desarrollo escolar y cultural. Magis. Revista Internacional de Investigación en Educación, 1(2), 289-303. https://doi.org/10.5944/educxx1.16.1.717 DOI: https://doi.org/10.5944/educxx1.16.1.717

Tapia, J. A., & García-Celay, I. M. (1990). Motivación y aprendizaje escolar. En Desarrollo psicológico y educación (pp. 183-198). Alianza.

Downloads

Published

2023-08-19

How to Cite

Gómez Martínez, R., Medrano García, M. L., & Aznar Sánchez, T. (2023). Motivation and personalization of teaching with machine learning. Journal of Management and Business Education, 6(3), 330–342. https://doi.org/10.35564/jmbe.2023.0017

Issue

Section

Articles