Artificial Intelligence (AI) as a tool for predicting the financial culture of a country

Authors

DOI:

https://doi.org/10.35564/jmbe.2024.0027

Keywords:

Artificial Intelligence , ai, Financial Literacy, Supervised Learning, Machine Learning, Predictive Analysis, Financial culture, Learning

Abstract

Artificial Intelligence (AI) currently presents different applications that allow, through data processing, the possibility of learning, predicting and adopting solutions in different fields of knowledge including the financial field. This research essay aims to analyze the capacity of Artificial Intelligence (AI) and supervised learning to predict the level of financial culture that individuals possess. For this purpose, 11 predictors previously selected for their possible influence on financial culture, are proposed and compared with the target variable (level of financial culture). The results obtained show that each of the 11 individual-level predictors correlate with the level of financial culture that each individual claim to have. In this respect, a general high or very high perception of the target variable is shown. However, considering the accuracy of the reference, the research shows that as the number of predictors is smaller, the accuracy of the reference decreases.

Downloads

Download data is not yet available.

References

Aguiar, I., y Zagalaz, J. R. (2021). Women and Financial Literacy in Spain. Does Marital Status Matter? Journal of Women & Aging, 34(6), 785–799. https://doi.org/10.1080/08952841.2021.1991194

Alonso, A., y Carbó, J.M. (2022). Inteligencia Artificial y Finanzas: Una alianza Estratégica (Artificial Intelligence and Finance: A Strategic Alliance). Banco de España. Occasional Paper No. 2222. https://doi.org/10.2139/ssrn.4252710

Ashton, J. K., Gerrard, B., y Hudson, R. (2010). ¿Do National Soccer Results Really Impact on The Stock Market? Applied Economics, 43(26), 3709–3717. https://doi.org/10.1080/00036841003689762

Berument, H., Ceylan, N. B. y Gozpinar, E. (2006). Performance Of Soccer on The Stock Market: Evidence from Turkey. The Social Science Journal, 43(4), 695–699. https://doi.org/10.1016/j.soscij.2006.08.021

Bishop, C. (2007). Pattern Recognition and Machine Learning. New York, NY: Springer.

Boyle, G. y Walter, B. (2003). Reflected Glory and Failure: International Sporting Success and The Stock Market. Applied Financial Economics, 13, 225–235. https://doi.org/10.1080/09603100210148230

Cachón Rodríguez, G., Gomez Martinez, R., Martinez-Navalon, J.-G., & Prado-Roman, C. (2019). Artificial intelligence to predict loyalty to university. Journal of Management and Business Education, 2(1), 17–27. https://doi.org/10.35564/jmbe.2019.0003

Caruana, R., y Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised Learning Algorithms. Association for Computing Machinery, New York, NY, USA, 161–168. https://doi.org/10.1145/1143844.1143865

Centeno, A. (2020). Big Data. Técnicas de Machine Learning para la Creación de Modelos Predictivos para Empresas. [Trabajo Fin de Carrera, Universidad Pontificia de Comillas]. Repositorio Comillas. http://hdl.handle.net/11531/45878

Chang, S., Chen, S., Chou, R. K. y Lin, Y. (2012). Local Sports Sentiment and Returns of Locally Headquartered Stocks: A Firm-Level Analysis. Journal of Empirical Finance,19(3), 309–318. https://doi.org/10.1016/j.jempfin.2011.12.005

Comisión Nacional del Mercado de Valores y Ministerio de Asuntos Económicos y Transformación Digital. (2021). Plan de Educación Financiera 2022 – 2025. Banco de España.

Consejo de Estabilidad Financiera (2017). Artificial Intelligence and Machine Learning in Financial Services. P011117.pdf (fsb.org)

Damián, Z. Y., y Sánchez, J. A. (2024). Educación, Cultura e Inclusión Financiera: Una Revisión Bibliográfica. Actas del VIII Congreso de Investigación, Desarrollo e Innovación de la Universidad Internacional de Ciencia y Tecnología. https://doi.org/10.47300/actasidi-unicyt-2023-29

Del Barrio, D. (2022). Aplicación del Aprendizaje Automático en Modelos de Materia Activa. [Proyecto Fin de Carrera, E.T.S.I. Industriales, Escuela Técnica Superior de Ingenieros Industriales]. Archivo digital UPM. https://oa.upm.es/70193

Demirhan, D. (2013). Stock Market Reaction to National Sporting Success: Case of Istanbul Stock Exchange. Pamukkale Journal of Sport Sciences, 4(3), 107–121.

Díaz, J. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 180-181. https://dx.doi.org/10.4067/S0718-33052021000200180

Domínguez, J.M. (2022). La Cultura Financiera en la Sociedad Española: Conocimientos, Competencias y Hábitos Financieros. Panorama Social, n. º 35. https://dialnet.unirioja.es/servlet/articulo?codigo=8683126

European Commission (2023). Monitoring the Level of Financial Literacy in the EU. Flash Eurobarometer 525. https://europa.eu/eurobarometer/surveys/detail/2953

Espino, C. (2017). Análisis Predictivo: Técnicas y Modelos Utilizados y Aplicaciones del Mismo – Herramientas Open Source que Permiten su Uso. [Trabajo Fin de Grado, Universitat Oberta de Catalunya]. Repositori Institucional O2. http://hdl.handle.net/10609/59565

Gimeno, R., y Marqués, J.M. (2022). Tradición e Inteligencia Artificial: Oportunidades y Retos del Machine Learning para los Servicios Financieros. ICE, Revista De Economía, (926). https://doi.org/10.32796/ice.2022.926.7403

Gómez, R. y Prado, C. (2014). Sentimiento del Inversor, Selecciones Nacionales de Fútbol y su Influencia Sobre Sus Índices Nacionales. Revista Europea de Dirección y Economía de la Empresa, 23(3), 99-114. https://doi.org/10.1016/j.redee.2014.02.001

Gómez Martínez, R., Medrano-García, M. L., & Aznar-Sánchez, T. (2024). Artificial intelligence to predict university master’s program recommendations. Journal of Management and Business Education, 7(1), 25–36. https://doi.org/10.35564/jmbe.2024.0002

Harding, N. y He, W. (2011). Investor Mood and The Determinants of Stock Prices: An Experimental Analysis. Accounting and Finance, Forthcoming. http://dx.doi.org/10.2139/ssrn.1786344

Hastie, T., Tibshirani, R., y Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer.

Hirshleifer, D. y Shumway, T. (2003). Good day Sunshine: Stock Returns and The Weather. Journal of Finance, 58, 1009–1032. https://doi.org/10.1111/1540-6261.00556

Hospido, L., Machelett, M., Pidkuyko, M. y Villanueva, E. (2021). Encuesta de Competencias Financieras (ECF). Banco de España. https://doi.org/10.53479/34752

Housel, M. (2020). The Psychology of Money. Timeless Lessons on Wealth, Greed, and Happiness. Harriman House.

Irigoin, U., y Morales, C. (2024). El Machine Learning en las Finanzas. Mount Scopus Journal. https://hcommons.org/deposits/item/hc:68005

Jordan, J.M., y Mitchell, T.M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science 349, 255-260. https://doi.org/10.1126/science.aaa8415

Kahneman, D. y Tversky, A. (1979). Prospect Theory: An Analysis of Decisions Under Risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185

McCarthy, J., Minsky, M., Rochester, N., y Shannon, C.E. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Magazine, 27(4), 12 - 14. https://doi.org/10.1609/aimag.v27i4.1904

Mishra, V., y Smyth, R. (2010). An Examination of The Impact of India’s Performance in One-Day Cricket Internationals on The Indian Stock Market. Pacific-Basin Finance Journal, 18(3), 319–334. https://doi.org/10.1016/j.pacfin.2010.02.005

Mullainathan, S., y Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31 (2), 87 – 106. https://doi.org/10.1257/jep.31.2.87

Naeem, S., Ali, A., Anam, S., y Munawar, M. (2023). An Unsupervised Machine Learning Algorithms: Comprehensive Review. International Journal of Computing and Digital Systems. http://dx.doi.org/10.12785/ijcds/130172

Rojas, E. M. (2020). Machine Learning: Análisis de Lenguajes de Programación y Herramientas para Desarrollo. Revista Ibérica de Sistemas e Tecnologias de Informação, Nº (E28), 586-599.

Sandoval, L. J. (2018). Algoritmos de Aprendizaje Automático para Análisis y Predicción de Datos. Revista Tecnológica; no. 11.

Trejos, D. F., Osorio, S. L., Corrales, L. V., y Duque, P. (2021). Toma de Decisiones Financieras: Perspectivas de Investigación. Revista de Ingenierías Interfaces, vol. 4, no. 1, pp. 1 – 22. https://dialnet.unirioja.es/servlet/articulo?codigo=8661426

Parne, P. (2021). Artificial Intelligence & Machine Learning Role in Financial Services. Advances In Machine Learning. https://doi.org/10.5121/csit.2021.111504

Parra, F. (2019). Estadística y Machine Learning con R. Editorial Académica Española. https://bookdown.org/content/2274/bibliografia.html

PISA (2022). Competencia Financiera. Informe Español. Instituto Nacional de Evaluación Educativa. https://www.libreria.educacion.gob.es/libro/pisa-2022-competencia-financiera-informe-espanol_184455/

Shalev-Shwartz, S., y Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107298019

Skinner, B.F. (1948). Superstition in the pigeon. Journal of Experimental Psychology, 38 (2), 168 – 172. https://doi.org/10.1037/h0055873

ai and financial culture

Published

2024-11-13

How to Cite

Borreguero Arias, D., Gómez Martínez, R., Alard Josemaría, J., & Prado Román, C. (2024). Artificial Intelligence (AI) as a tool for predicting the financial culture of a country. Journal of Management and Business Education, 7(3), 477–491. https://doi.org/10.35564/jmbe.2024.0027

Issue

Section

Articles