Artificial Intelligence (AI) as a tool for predicting the financial culture of a country
DOI:
https://doi.org/10.35564/jmbe.2024.0027Keywords:
Artificial Intelligence , ai, Financial Literacy, Supervised Learning, Machine Learning, Predictive Analysis, Financial culture, LearningAbstract
Artificial Intelligence (AI) currently presents different applications that allow, through data processing, the possibility of learning, predicting and adopting solutions in different fields of knowledge including the financial field. This research essay aims to analyze the capacity of Artificial Intelligence (AI) and supervised learning to predict the level of financial culture that individuals possess. For this purpose, 11 predictors previously selected for their possible influence on financial culture, are proposed and compared with the target variable (level of financial culture). The results obtained show that each of the 11 individual-level predictors correlate with the level of financial culture that each individual claim to have. In this respect, a general high or very high perception of the target variable is shown. However, considering the accuracy of the reference, the research shows that as the number of predictors is smaller, the accuracy of the reference decreases.
Downloads
References
Aguiar, I., y Zagalaz, J. R. (2021). Women and Financial Literacy in Spain. Does Marital Status Matter? Journal of Women & Aging, 34(6), 785–799. https://doi.org/10.1080/08952841.2021.1991194
Alonso, A., y Carbó, J.M. (2022). Inteligencia Artificial y Finanzas: Una alianza Estratégica (Artificial Intelligence and Finance: A Strategic Alliance). Banco de España. Occasional Paper No. 2222. https://doi.org/10.2139/ssrn.4252710
Ashton, J. K., Gerrard, B., y Hudson, R. (2010). ¿Do National Soccer Results Really Impact on The Stock Market? Applied Economics, 43(26), 3709–3717. https://doi.org/10.1080/00036841003689762
Berument, H., Ceylan, N. B. y Gozpinar, E. (2006). Performance Of Soccer on The Stock Market: Evidence from Turkey. The Social Science Journal, 43(4), 695–699. https://doi.org/10.1016/j.soscij.2006.08.021
Bishop, C. (2007). Pattern Recognition and Machine Learning. New York, NY: Springer.
Boyle, G. y Walter, B. (2003). Reflected Glory and Failure: International Sporting Success and The Stock Market. Applied Financial Economics, 13, 225–235. https://doi.org/10.1080/09603100210148230
Cachón Rodríguez, G., Gomez Martinez, R., Martinez-Navalon, J.-G., & Prado-Roman, C. (2019). Artificial intelligence to predict loyalty to university. Journal of Management and Business Education, 2(1), 17–27. https://doi.org/10.35564/jmbe.2019.0003
Caruana, R., y Niculescu-Mizil, A. (2006). An Empirical Comparison of Supervised Learning Algorithms. Association for Computing Machinery, New York, NY, USA, 161–168. https://doi.org/10.1145/1143844.1143865
Centeno, A. (2020). Big Data. Técnicas de Machine Learning para la Creación de Modelos Predictivos para Empresas. [Trabajo Fin de Carrera, Universidad Pontificia de Comillas]. Repositorio Comillas. http://hdl.handle.net/11531/45878
Chang, S., Chen, S., Chou, R. K. y Lin, Y. (2012). Local Sports Sentiment and Returns of Locally Headquartered Stocks: A Firm-Level Analysis. Journal of Empirical Finance,19(3), 309–318. https://doi.org/10.1016/j.jempfin.2011.12.005
Comisión Nacional del Mercado de Valores y Ministerio de Asuntos Económicos y Transformación Digital. (2021). Plan de Educación Financiera 2022 – 2025. Banco de España.
Consejo de Estabilidad Financiera (2017). Artificial Intelligence and Machine Learning in Financial Services. P011117.pdf (fsb.org)
Damián, Z. Y., y Sánchez, J. A. (2024). Educación, Cultura e Inclusión Financiera: Una Revisión Bibliográfica. Actas del VIII Congreso de Investigación, Desarrollo e Innovación de la Universidad Internacional de Ciencia y Tecnología. https://doi.org/10.47300/actasidi-unicyt-2023-29
Del Barrio, D. (2022). Aplicación del Aprendizaje Automático en Modelos de Materia Activa. [Proyecto Fin de Carrera, E.T.S.I. Industriales, Escuela Técnica Superior de Ingenieros Industriales]. Archivo digital UPM. https://oa.upm.es/70193
Demirhan, D. (2013). Stock Market Reaction to National Sporting Success: Case of Istanbul Stock Exchange. Pamukkale Journal of Sport Sciences, 4(3), 107–121.
Díaz, J. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 180-181. https://dx.doi.org/10.4067/S0718-33052021000200180
Domínguez, J.M. (2022). La Cultura Financiera en la Sociedad Española: Conocimientos, Competencias y Hábitos Financieros. Panorama Social, n. º 35. https://dialnet.unirioja.es/servlet/articulo?codigo=8683126
European Commission (2023). Monitoring the Level of Financial Literacy in the EU. Flash Eurobarometer 525. https://europa.eu/eurobarometer/surveys/detail/2953
Espino, C. (2017). Análisis Predictivo: Técnicas y Modelos Utilizados y Aplicaciones del Mismo – Herramientas Open Source que Permiten su Uso. [Trabajo Fin de Grado, Universitat Oberta de Catalunya]. Repositori Institucional O2. http://hdl.handle.net/10609/59565
Gimeno, R., y Marqués, J.M. (2022). Tradición e Inteligencia Artificial: Oportunidades y Retos del Machine Learning para los Servicios Financieros. ICE, Revista De Economía, (926). https://doi.org/10.32796/ice.2022.926.7403
Gómez, R. y Prado, C. (2014). Sentimiento del Inversor, Selecciones Nacionales de Fútbol y su Influencia Sobre Sus Índices Nacionales. Revista Europea de Dirección y Economía de la Empresa, 23(3), 99-114. https://doi.org/10.1016/j.redee.2014.02.001
Gómez Martínez, R., Medrano-García, M. L., & Aznar-Sánchez, T. (2024). Artificial intelligence to predict university master’s program recommendations. Journal of Management and Business Education, 7(1), 25–36. https://doi.org/10.35564/jmbe.2024.0002
Harding, N. y He, W. (2011). Investor Mood and The Determinants of Stock Prices: An Experimental Analysis. Accounting and Finance, Forthcoming. http://dx.doi.org/10.2139/ssrn.1786344
Hastie, T., Tibshirani, R., y Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer.
Hirshleifer, D. y Shumway, T. (2003). Good day Sunshine: Stock Returns and The Weather. Journal of Finance, 58, 1009–1032. https://doi.org/10.1111/1540-6261.00556
Hospido, L., Machelett, M., Pidkuyko, M. y Villanueva, E. (2021). Encuesta de Competencias Financieras (ECF). Banco de España. https://doi.org/10.53479/34752
Housel, M. (2020). The Psychology of Money. Timeless Lessons on Wealth, Greed, and Happiness. Harriman House.
Irigoin, U., y Morales, C. (2024). El Machine Learning en las Finanzas. Mount Scopus Journal. https://hcommons.org/deposits/item/hc:68005
Jordan, J.M., y Mitchell, T.M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science 349, 255-260. https://doi.org/10.1126/science.aaa8415
Kahneman, D. y Tversky, A. (1979). Prospect Theory: An Analysis of Decisions Under Risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185
McCarthy, J., Minsky, M., Rochester, N., y Shannon, C.E. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Magazine, 27(4), 12 - 14. https://doi.org/10.1609/aimag.v27i4.1904
Mishra, V., y Smyth, R. (2010). An Examination of The Impact of India’s Performance in One-Day Cricket Internationals on The Indian Stock Market. Pacific-Basin Finance Journal, 18(3), 319–334. https://doi.org/10.1016/j.pacfin.2010.02.005
Mullainathan, S., y Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31 (2), 87 – 106. https://doi.org/10.1257/jep.31.2.87
Naeem, S., Ali, A., Anam, S., y Munawar, M. (2023). An Unsupervised Machine Learning Algorithms: Comprehensive Review. International Journal of Computing and Digital Systems. http://dx.doi.org/10.12785/ijcds/130172
Rojas, E. M. (2020). Machine Learning: Análisis de Lenguajes de Programación y Herramientas para Desarrollo. Revista Ibérica de Sistemas e Tecnologias de Informação, Nº (E28), 586-599.
Sandoval, L. J. (2018). Algoritmos de Aprendizaje Automático para Análisis y Predicción de Datos. Revista Tecnológica; no. 11.
Trejos, D. F., Osorio, S. L., Corrales, L. V., y Duque, P. (2021). Toma de Decisiones Financieras: Perspectivas de Investigación. Revista de Ingenierías Interfaces, vol. 4, no. 1, pp. 1 – 22. https://dialnet.unirioja.es/servlet/articulo?codigo=8661426
Parne, P. (2021). Artificial Intelligence & Machine Learning Role in Financial Services. Advances In Machine Learning. https://doi.org/10.5121/csit.2021.111504
Parra, F. (2019). Estadística y Machine Learning con R. Editorial Académica Española. https://bookdown.org/content/2274/bibliografia.html
PISA (2022). Competencia Financiera. Informe Español. Instituto Nacional de Evaluación Educativa. https://www.libreria.educacion.gob.es/libro/pisa-2022-competencia-financiera-informe-espanol_184455/
Shalev-Shwartz, S., y Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107298019
Skinner, B.F. (1948). Superstition in the pigeon. Journal of Experimental Psychology, 38 (2), 168 – 172. https://doi.org/10.1037/h0055873
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Management and Business Education
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
License terms at: https://creativecommons.org/licenses/by-nc/4.0/legalcode